博客
关于我
数字三角形问题(动态规划)
阅读量:801 次
发布时间:2019-03-25

本文共 940 字,大约阅读时间需要 3 分钟。

今天,我尝试解决了一个关于数字三角形的算法问题,目标是找到从三角形顶部到底层的路径,使得路径上的数字之和最大。这个过程让我深入了解了动态规划的应用,特别是在分治问题中的模拟思维方式。

在这个问题中,最优子结构在动态规划中发挥了重要作用。每一个节点到达底层的最优路径,都包含在它自身到达底层的最优子路径上。这意味着从上到下的每一个节点,其最优路径都必须经过它下方节点的最优路径选择。

状态转移方程为:t(i,j) = w(i,j) + max(t(i+1,j), t(i+1,j+1))。这意味着从第i层第j个节点到底层的最长路径长度,等于该节点的权值加上它下方两个节点中最大的那个节点的最长路径长度。这一状态转移方程确保了路径选择的最优性,因为它总是选择当前路径延伸时的最大收益。

在实现方面,这个问题可以通过从下向上的动态规划来解决。用一个二维数组存储数据,tri[i][j]表示第i层第j个节点的数据。初始时,二维数组中的值为题目给定的数字。接着,顺序地从第n-2层开始,计算每一层所有节点的最大路径值,这样确保在计算当前层的节点时,已经知道了下一层的计算结果。

代码实现可以如下:

int i, j;    for(i = n-2; i >= 0; i--){        for(j = 0; j <= i; j++){            a[i][j] += max(a[i+1][j], a[i+1][j+1]);        }    }    return a[0][0];}

这个代码的时间复杂度为O(n²),在n较大的情况下也能保持较好的性能。一开始可能会对代码中的轮动循环不太直观,但仔细分析后,其逻辑是清晰且巧妙的。

通过分析和实践,我理解到,动态规划的核心在于分解问题,将大问题分解为更小的子问题。每一个子问题都有自己的解,而这些子问题的解又可以组合起来得到最终的答案。在这个问题中,我们从底层向上逐步填充每一个节点的值,确保了每一步都选择了最大的可能值,从而保证了路径和的最大化。

总的来说,这个问题让我对动态规划在路径问题中的应用有了更深入的认识。理解这一点后,我能更自信地应用这种方法来解决类似的问题,甚至在更复杂的路径选择问题中寻找灵感。

转载地址:http://ukdyk.baihongyu.com/

你可能感兴趣的文章
Netty 4的内存管理:sun.misc.Unsafe
查看>>
Netty channelRegistered\ChannelActive---源码分析
查看>>
Netty NIO transport && OIO transport
查看>>
netty php,netty
查看>>
Netty WebSocket客户端
查看>>
netty 主要组件+黏包半包+rpc框架+源码透析
查看>>
Vue过渡 & 动画---vue工作笔记0014
查看>>
Netty 异步任务调度与异步线程池
查看>>
Netty 的 Handler 链调用机制
查看>>
Netty 编解码器和 Handler 调用机制
查看>>
Netty 编解码器详解
查看>>
Netty 解决TCP粘包/半包使用
查看>>
Netty 调用,效率这么低还用啥?
查看>>
Netty 高性能架构设计
查看>>
Netty+Protostuff实现单机压测秒级接收35万个对象实践经验分享
查看>>
Netty+SpringBoot+FastDFS+Html5实现聊天App详解(一)
查看>>
netty--helloword程序
查看>>
netty2---服务端和客户端
查看>>