博客
关于我
数字三角形问题(动态规划)
阅读量:801 次
发布时间:2019-03-25

本文共 940 字,大约阅读时间需要 3 分钟。

今天,我尝试解决了一个关于数字三角形的算法问题,目标是找到从三角形顶部到底层的路径,使得路径上的数字之和最大。这个过程让我深入了解了动态规划的应用,特别是在分治问题中的模拟思维方式。

在这个问题中,最优子结构在动态规划中发挥了重要作用。每一个节点到达底层的最优路径,都包含在它自身到达底层的最优子路径上。这意味着从上到下的每一个节点,其最优路径都必须经过它下方节点的最优路径选择。

状态转移方程为:t(i,j) = w(i,j) + max(t(i+1,j), t(i+1,j+1))。这意味着从第i层第j个节点到底层的最长路径长度,等于该节点的权值加上它下方两个节点中最大的那个节点的最长路径长度。这一状态转移方程确保了路径选择的最优性,因为它总是选择当前路径延伸时的最大收益。

在实现方面,这个问题可以通过从下向上的动态规划来解决。用一个二维数组存储数据,tri[i][j]表示第i层第j个节点的数据。初始时,二维数组中的值为题目给定的数字。接着,顺序地从第n-2层开始,计算每一层所有节点的最大路径值,这样确保在计算当前层的节点时,已经知道了下一层的计算结果。

代码实现可以如下:

int i, j;    for(i = n-2; i >= 0; i--){        for(j = 0; j <= i; j++){            a[i][j] += max(a[i+1][j], a[i+1][j+1]);        }    }    return a[0][0];}

这个代码的时间复杂度为O(n²),在n较大的情况下也能保持较好的性能。一开始可能会对代码中的轮动循环不太直观,但仔细分析后,其逻辑是清晰且巧妙的。

通过分析和实践,我理解到,动态规划的核心在于分解问题,将大问题分解为更小的子问题。每一个子问题都有自己的解,而这些子问题的解又可以组合起来得到最终的答案。在这个问题中,我们从底层向上逐步填充每一个节点的值,确保了每一步都选择了最大的可能值,从而保证了路径和的最大化。

总的来说,这个问题让我对动态规划在路径问题中的应用有了更深入的认识。理解这一点后,我能更自信地应用这种方法来解决类似的问题,甚至在更复杂的路径选择问题中寻找灵感。

转载地址:http://ukdyk.baihongyu.com/

你可能感兴趣的文章
netty——bytebuf的创建、内存分配与池化、组成、扩容规则、写入读取、内存回收、零拷贝
查看>>
netty——Channl的常用方法、ChannelFuture、CloseFuture
查看>>
netty——EventLoop概念、处理普通任务定时任务、处理io事件、EventLoopGroup
查看>>
netty——Future和Promise的使用 线程间的通信
查看>>
netty——Handler和pipeline
查看>>
Vue输出HTML
查看>>
netty——黏包半包的解决方案、滑动窗口的概念
查看>>
Netty中Http客户端、服务端的编解码器
查看>>
Netty中使用WebSocket实现服务端与客户端的长连接通信发送消息
查看>>
Netty中实现多客户端连接与通信-以实现聊天室群聊功能为例(附代码下载)
查看>>
Netty中的组件是怎么交互的?
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
netty之 定长数据流处理数据粘包问题
查看>>
Netty事件注册机制深入解析
查看>>
netty代理
查看>>
Netty入门使用
查看>>
netty入门,入门代码执行流程,netty主要组件的理解
查看>>
Netty原理分析及实战(一)-同步阻塞模型(BIO)
查看>>
Netty原理分析及实战(三)-高可用服务端搭建
查看>>
Netty原理分析及实战(二)-同步非阻塞模型(NIO)
查看>>